Pure vorticity formulation and Galerkin discretization for the Brinkman equations

نویسندگان

  • VERÓNICA ANAYA
  • RICARDO RUIZ-BAIER
چکیده

We introduce a new finite element method for the approximation of the three-dimensional Brinkman problem formulated in terms of the velocity, vorticity, and pressure fields. The proposed strategy exhibits the advantage that, at the continuous level, a complete decoupling of vorticity and pressure can be established under the assumption of sufficient regularity. The velocity is then obtained as a simple postprocess from vorticity and pressure, using the momentum equation. Well-posedness follows straightforwardly by the Lax-Milgram theorem. The Galerkin scheme is based on Nédélec and piecewise continuous finite elements of degree k > 1 for vorticity and pressure, respectively. The discrete setting uses the very same ideas as in the continuous case, and the error analysis for the vorticity scheme is carried out first. As a byproduct of these error bounds and the problem decoupling, the convergence rates for the pressure and velocity are readily obtained in the natural norms with constants independent of the viscosity. We also present details about how the analysis of the method is modified for axisymmetric, meridian Brinkman flows; and modify the decoupling strategy to incorporate the case of Dirichlet boundary conditions for the velocity. A set of numerical examples in two and three spatial dimensions illustrate the robustness and accuracy of the finite element method, as well as its competitive computational cost compared to recent fully-mixed and augmented formulations of incompressible flows.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Error Analysis for the 3D Navier-Stokes Equations in Velocity-Vorticity-Helicity Form

We present a rigorous numerical analysis and computational tests for the Galerkin finite element discretization of the velocity-vorticity-helicity formulation of the equilibrium Navier-Stokes equations (NSE). This formulation was recently derived by the authors, is the first NSE formulation that directly solves for helicity, the first velocityvorticity formulation to naturally enforce incompres...

متن کامل

A (dis)continuous Finite Element Model for Generalized 2d Vorticity Dynamics

Abstract. A mixed continuous and discontinuous Galerkin finite element discretization has been constructed for a generalized vorticity-streamfunction formulation in two spatial dimensions. This formulation consists of a hyperbolic (potential) vorticity equation and a linear elliptic equation for a (transport) streamfunction. The advantages of this finiteelement model are the allowance of comple...

متن کامل

A Mixed Formulation for the Brinkman Problem

The Brinkman model is a unified law governing the flow of a viscous fluid in cavity (Stokes equations) and in porous media (Darcy equations). In this work, we explore a novel mixed formulation of the Brinkman problem. Introducing the flow’s vorticity as additional unknown, this formulation allows for a uniformly stable and conforming discretization by standard finite elements (Nédélec, Raviart-...

متن کامل

Meshless Local Petrov-Galerkin Method– Steady, Non-Isothermal Fluid Flow Applications

 Abstract : The meshless local Petrov-Galerkin method with unity as the weighting function has been applied to the solution of the Navier-Stokes and energy equations. The Navier-Stokes equations in terms of the stream function and vorticity formulation together with the energy equation are solved for a driven cavity flow for moderate Reynolds numbers using different point distributions. The L2-...

متن کامل

A conservative discontinuous Galerkin scheme for the 2D incompressible Navier-Stokes equations

In this paper we consider a conservative discretization of the two-dimensional incompressible Navier–Stokes equations. We propose an extension of Arakawa’s classical finite difference scheme for fluid flow in the vorticity-stream function formulation to a high order discontinuous Galerkin approximation. In addition, we show numerical simulations that demonstrate the accuracy of the scheme and v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016